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Introduction
The accurate evaluation of surgical trainees’ performance is 
essential for surgical training (i.e., acquiring surgical skills) and 
serves as a key component of proficiency-based training (i.e., 
mastering surgical skills).1 To develop their skills, surgeons 
must regularly perform procedures under supervision. 
However, the growing complexity of modern healthcare, 
restrictions on working hours, and ethical concerns related to 
patient safety necessitate the development of efficient training 
programs that protect patients. Such programs should facilitate 
automated, objective, and data-driven assessments of surgical 

skills while offering meaningful feedback.2 Recent shifts in 
surgical training, including self-directed learning and reflective 
practice, highlight the benefits of repetitive and independent 
practice, which have been enabled by objective evaluation 
tools.3

The potential for bias in surgical skill assessment has been 
widely debated in various studies.4-6 A data-driven approach 
can provide an objective evaluation method, minimizing bias 
in assessing surgical proficiency (see the appendix for further 
in-depth discussion). Current methods for evaluating technical 
skills include task-specific checklists, global rating scales, 
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and technology-based performance measures. Although 
observer-based scoring metrics are cost-effective and easily 
accessible, they are prone to bias and can be time-consuming 
to implement. In contrast, technology-based performance 
measures offer a unique opportunity for detailed, automated, 
and objective assessments,7 which can be integrated into 
the digital platforms connected to laparoscopic and robotic 
workstations.
A systematic review examining the objective assessment 
of robotic surgical techniques across different specialties8 
has revealed that manual and automated tools, such as the 
Objective Structured Assessment of Technical Skills and the 
Global Evaluative Assessment of Robotic Skills, still carry 
potential subjective bias. However, automated assessment 
tools, which utilize data from robotic workstations, provide 
more objective and comprehensive evaluations. The review 
highlights that a key issue is the lack of a universally accepted 
standard for assessment, resulting in variability in the focus, 
application, and effectiveness of existing tools.
Recent advancements in computer vision have enabled the 
development of automated systems capable of assessing surgeons’ 
expertise with high accuracy using automated performance 
metrics (APMs). Studies have demonstrated that experts 
considerably outperform novices in areas such as instrument 
length, bimanual dexterity, instrument idle time, camera path 
length, and camera movements. Similar distinctions have also 
been observed between super experts and experts.8 APMs 
may offer a more comprehensive and objective evaluation of a 
surgeon’s skills than expert evaluators. However, most studies on 
APMs (Appendix 1 and Appendix 2) are based on small sample 
sizes, lack diversity in training datasets, and have no or limited 
validation datasets. There is a need to investigate the benefits 
of existing APMs using large, diverse, real-world video datasets.
This study aims to enhance the evaluation and improvement 
of surgical performance in colorectal procedures by using 
APMs extracted from laparoscopic and robotic surgical video 
analysis.

Materials and Methods

Designing the Study
The European Society of Coloproctology (ESCP) has 
successfully conducted many international prospective 
audits.9,10 This study was presented during the annual 
conference of the ESCP in Thessaloniki at the cohort studies 
session on Wednesday, September 25, 2024. The study 
design, including the type of index procedure, the time 
interval between the index and the next procedure, how 
many procedures are expected between them, how data can 
be transferred, and other design-related questions, was then 
discussed with the audience. The audience then voted on 

these issues using the ESCP mobile phone application. The 
design of this study is based on these discussions and the 
subsequent voting.
To see this session and the voting, use this link:
https://vimeo.com/escp/review/1033584541/e8a4b81d1d
This is a prospective, randomized, multicenter international 
cohort study. The participants (surgeons) will be randomly 
assigned to one of two groups to ensure comparability and 
minimize selection bias. Group 1 will receive feedback based 
on video analyses of their performance, and Group 2 will 
serve as the control group and will not receive feedback. 
Randomization will be conducted using a computer-generated 
sequence, with allocation concealed until assignment.
The study will compare the same types of cases performed 
by the same surgeon over time to monitor whether feedback 
improves the surgeon’s performance.

Primary Outcome
The primary outcome is the improvement of surgical 
performance, measured by improvement in APMs. APMs will 
be extracted from two-dimensional laparoscopic or robotic 
colorectal procedure video films after feedback to the surgeons.

Secondary Outcome
The secondary outcome is the measurement of the model’s 
performance beyond simple accuracy, including the assessment 
of APMs using large, diverse, real-world video datasets.

Inclusion and Exclusion Criteria
The inclusion criteria are two-dimensional, real-world surgical 
video films recorded during elective laparoscopic or robotic 
colorectal procedures. Both procedures used for training and 
those not intended for training will be included.

Selection of the Colorectal Procedures
The authors’ choice of colorectal procedures is a pragmatic 
one aimed at obtaining a homogeneous group of surgical 
procedures, enabling knowledge transfer from common to 
more complex procedures and promoting data efficiency. 
By selecting different colorectal procedures, the algorithm’s 
applicability in medical practice and the scalability of the 
networks will be greatly improved.
Only elective curative procedures will be included, as the 
emergency setting may be affected by multiple factors that 
could introduce noise into the interpretation. Procedures 
in which conversion from the original plan (laparoscopic or 
robotic) to an open procedure occurs will also be included 
to train the algorithm to recognize non-progression in the 
surgical procedure.
The following index colorectal procedures will be included:
•	 Ileo-caecal and ileocolic resections
•	 Right hemicolectomy and extended right hemicolectomy, 

as defined in the ESCP 2015 audit9

https://vimeo.com/escp/review/1033584541/e8a4b81d1d
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•	 Left hemicolectomy and sigmoid colon resections, as 
defined in the ESCP 2017 audit10,11

These colorectal procedures are usually performed by 
supervised trainees and consultant surgeons. The procedures 
will be included regardless of indication (benign or malignant), 
provided that they are intended to be curative. There is no need 
for special adjustment for case mix or surgical complexity, 
as the surgeon will choose 2-3 video films of a procedure 
performed by them, followed by 2-3 video films of the same 
procedure after receiving APM-based feedback.
Appendix 3 shows the clinical report form (CRF) that will be 
attached to each film. This CRF has been kept simple to ensure 
basic information is provided for each procedure.

Quality Control of the Video Films
The video data will be recorded in high definition with 
a resolution of 1920 × 1080 pixels. However, 1280 × 720 
pixels will be accepted in centers that cannot provide higher-
resolution films.
Unedited video films will undergo quality control checks. Two 
authors will review the footage for overall quality, including 
blurriness, lack of focus, loss of fine details, stability, color 
accuracy, exposure, and clarity. 

Phase Definition
The phase definitions for each laparoscopic or robotic 
colorectal procedure will follow the recommendations of 
leading international surgical societies, if available. For 
procedures with no well-defined phases, at least three expert 
surgeons will be consulted to define the procedure phases.

Preprocessing and De-identification of Surgical Video Data
Data and video files will be uploaded to and stored on a secure 
server provided by Aalborg University. To comply with data 
privacy regulations, the data will first be de-identified, with 
the removal of all metadata. Metadata includes all patient 
data, the date, time, and location of the operation, as well 
as information about the operating staff. No off-the-shelf 
solutions exist for such a setting, so tools tailored for this study 
will be developed.

Annotation of Surgical Video Data
The annotation process will encompass two key tasks: 
identification of surgical phases and tool positions. These 
annotations are critical for subsequent model training and 
analysis of APMs, and as such, rigorous procedures will be 
followed to ensure consistency and reliability.

Annotator Roles and Tools
•	 Surgical phase annotation will be performed by surgical 

residents in their 4th year or higher of clinical training, who 
possess adequate familiarity with the procedural workflow 
and phase definitions.

•	 Tool position annotation, which is comparatively more 
mechanical and less reliant on clinical judgment, will be 
conducted by trained undergraduate or graduate student 
assistants.

Annotations Will Be Conducted Using Established Tools Such 
as
•	 V7 (https://www.v7labs.com),

•	 Computer Vision Annotation Tool (https://www.cvat.ai/)

•	 Labelbox (https://labelbox.com)

All annotations will be exported and stored in multiple object 
tracking format,12 a standard format suitable for downstream 
analysis and model training.

Annotator Training
All annotators will undergo a structured training program, 
including:

•	 A 2-hour initial training session introducing the annotation 
platform, guidelines, and tasks

•	 Annotated examples and a reference manual defining 
surgical phases and annotation criteria

•	 A pilot annotation set of 3-5 videos to be annotated during 
training, followed by a feedback session with an expert 
reviewer (a board-certified surgeon or senior research 
fellow)

•	 Certification, requiring annotators to achieve ≥85% 
agreement with expert labels on a pilot set before 
contributing to the main dataset

Inter-rater Reliability and Adjudication
To ensure consistency:

•	 A subset of 20% of the videos will be annotated 
independently by at least two annotators.

•	 Inter-rater reliability will be calculated using Cohen’s kappa 
for phase annotations and Intersection over Union (IoU) for 
tool position bounding boxes.

•	 A minimum acceptable kappa score of 0.75 and IoU ≥0.5 
will be enforced, and discrepancies will trigger review.

Although manual annotation inherently carries a degree of 
subjectivity -particularly in complex tasks such as surgical 
phase recognition- our protocol is specifically designed to 
minimize variability. Structured training, expert-reviewed 
feedback, a certification threshold, and ongoing inter-rater 
reliability checks help ensure consistency and mitigate 
annotator bias.

Quality Control and Adjudication
•	 A surgical expert will review a random sample of 10% of 

the annotations to validate correctness and completeness.

•	 If systematic errors or deviations are found, affected 
annotations will be re-reviewed or corrected.

https://www.v7labs.com
https://www.cvat.ai/
https://labelbox.com
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•	 A weekly consensus meeting involving annotators and 
supervising experts will be held to discuss edge cases and 
update annotation guidelines as needed.

•	 A detailed annotation logbook will be maintained for each 
video, documenting the annotator ID, timestamp, tools 
used, and any issues or anomalies.

These measures will ensure that the dataset used for 
downstream machine learning (ML) model training is robust, 
consistent, and clinically reliable.

Study Stages

Stage One
A prospective audit will be conducted, in which laparoscopic 
and robotic real-world video films of colorectal procedures 
are collected from international collaborating centers. 
Any consultant or trainee can participate in the study. The 
collaborators will send 2-3 real-world video films of colorectal 
procedures that they have performed. The collaborators may 
choose how many procedures to send for analysis, provided 
that they submit at least two films of the same procedure.

Stage Two
The collaborators will then receive feedback on their films, 
including an APMs data analytics report. Based on the APMs 
report, the participating surgeon will receive an objective, 
data-driven technical assessment of performance adjusted for 
case difficulty. The confidential, password-protected report 
will highlight areas for performance improvement. This report 
will include the types of assessed APMs, their interpretation, 
and suggestions for improving performance. The report will 
be generated in a standardized format by the study team after 
a short pilot assessment. 

Stage Three
The collaborators will send 2-3 videos of the same colorectal 
procedures that they performed in stage one after receiving the 
data analytics. These follow-up procedures must be performed 
within 6 months of the first (index) procedure. At least 10 
procedures must be performed after the index procedure.

Stage Four
Data analysis of APMs will compare pre- and post-feedback 
operations. The collaborators will receive a detailed feedback 
report upon request. The confidential, password-protected 
report will include APMs from the two sets of films collected 
in stages one and three. 

Data Collection 
With a vast network of surgeons in the OpenSourceResearch 
Collaboration, ESCP, and American Society of Colon and 
Rectal Surgeons, it is expected that a large, generalizable, and 
diverse dataset will be obtained, which can be used to train 
the model.

Statistical Analysis
The data analysis consists of two parts:
•	 Extraction of surgical phases and tool tracks
•	 Computation of APMs from extracted data

Extraction of Surgical Phases and Tool Tracks
No off-the-shelf solutions for computing APMs exist, so a 
custom algorithm will be developed. Inspiration can be found 
in earlier approaches.13,14 Even so, improved results should be 
obtainable using more modern transformer-based methods, 
including action recognition methods,15 such as ASFormer 
surgical phase detection; object detection methods,16 such as 
DEtection TRansformer17 for tool detection; and CoTracker18 
for surgical tool tracking.
Fine-tuning of pre-trained algorithms will be leveraged to the 
fullest possible extent, but substantial amounts of training 
data must be manually annotated, as outlined in the previous 
section.
Accuracy will be reported using standard metrics: Mean 
over Frames15 for surgical phase detection and Higher Order 
Tracking Accuracy19 for tool tracking.

Computations of Automated Performance Metrics From 
Extracted Data
Computation of APMs will be performed using custom methods 
for each metric. All APMs are well-defined by mathematical 
formulas (Appendix 2), so no ML is required for this stage. 
It may be interesting to test an ML-based surgeon rater using 
the raw extracted data and compare its performance with the 
predefined APMs. However, that exercise is left for future 
work.

Evaluation
Apart from using standard evaluation metrics as mentioned 
above, an important aspect of modeling is out-of-sample 
validation, which involves partitioning the data into training, 
validation, and test sets-usually in a 70%:10%:20% split or 
similar. This project will follow this standard procedure for 
the computer vision field. If the amount of annotated data is 
insufficient to allow for such a split, N-fold cross-validation 
will be performed.

Statistical Analysis

Sample Size Calculation
Assuming a 20% change in APMs, the sample size was 
calculated as follows:
•	 Z is the Z-score corresponding to the desired confidence 

level (for a 95% confidence level, Z≈1.96).
•	 p is the estimated proportion at baseline (or for the control 

group).
•	 E is the margin of error expressed as a proportion (20%=0.2).
•	 p’ is the desired percentage change expressed as a decimal.
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The sample size used the given values:

•	 Population size (N)=1,000

•	 Confidence level=95% (Z≈1.96)

•	 Margin of error=20% (0.2)

•	 Desired percentage change=20% (0.2)

The following formula was used: n=(1.962 × p × [1 – p]) / (0.22 
× [p × (1 + 0.2)])

We can assume a conservative estimate of 0.5 for p:

n=(1.962 × 0.5 × [1 – 0.5]) / (0.22 × [0.5 × (1 + 0.2)])

n=(3.8416 × 0.25) / (0.04 × 0.6)

n≈10.1056 / 0.024

n≈421.0667

Based on this calculation, a sample size of approximately 422 
individuals is needed to detect a 20% change in APMs.

Given the lack of prior evidence on which APMs are most 
responsive to feedback, this study adopts an exploratory 
approach, assessing multiple performance domains without 
designating a single primary outcome. A 20% relative 
improvement in any APM will be considered meaningful in 
this context.

Adjusting for Case Complexity
To address potential confounders related to case complexity, 
key patient-level variables that may influence surgical 
performance will be collected for each patient undergoing 
surgery. During the analysis phase, statistical methods such 
as multivariable regression or propensity score matching 
will be used to adjust for differences in case complexity 
between groups. This approach will help isolate the effect of 
feedback on the surgeon’s performance, minimizing the risk 
of confounding due to patient-related factors. It allows for 
accounting for case complexity while maintaining the integrity 
of randomization and minimizing bias.

Analysis Plan
This study includes within-subject pre- and post-feedback 
comparisons for surgical performance, alongside classifier 
evaluation tasks for tool detection and phase recognition. 
Analyses will be conducted using SPSS and/or Python 
statistical libraries (e.g., SciPy, scikit-learn).

1. Descriptive Statistics
•	 Summary statistics (mean, median, standard deviation, 

range) will be provided for continuous variables, and 
frequencies and proportions will be provided for categorical 
variables.

2. Analysis of APMs
•	 For pre- vs. post-feedback comparisons within surgeons, 

paired t-tests (for normally distributed APMs) and Wilcoxon 
signed-rank tests (for non-parametric data) will be used.

•	 For comparing multiple time points or groups, repeated 
measures analysis of variance or linear mixed-effects 
models will be applied, allowing for both fixed effects (e.g., 
feedback, session) and random effects (e.g., surgeon ID).

3. Evaluation of Classifier Performance (Tool Detection and 
Phase Recognition)
•	 Receiver operating characteristic curves and the area under 

the curve (AUC) will be computed for binary classification 
tasks, including tool presence detection (whether a specific 
tool is in use at a given time) and phase classification 
performance (correct classification of surgical phase per 
video frame).

•	 For multi-class phase classification, macro- and micro-
averaged AUCs will be reported.

•	 Precision, recall, F1-score, and confusion matrices will also 
be presented to provide a comprehensive evaluation of 
classification performance.

4. Handling of Missing or Ambiguous Data
•	 Incomplete annotations or ambiguous cases will be flagged 

and excluded from the primary analysis, but they may be 
included in sensitivity analyses.

•	 Multiple imputation will be considered if missing data 
exceeds 5% in any analytic subset.

5. Statistical Significance
•	 A two-sided p-value of <0.05 will be considered statistically 

significant. Where applicable, 95% confidence intervals 
will be reported alongside effect sizes.

Ethical Considerations
All data collected will reflect current practice, with no changes 
made to planned treatment pathways. As such, this study 
should be registered as an audit of current practice at each 
participating center. The local team at each site is responsible 
for ensuring that local audit approval (or equivalent) is 
obtained. Participating centers will be asked to confirm that 
they have received formal approval at their sites. Patients’ 
consent to use the videos for research purposes will be 
obtained, including consent for the de-identified videos to be 
used in future studies without additional consent.

Discussion
This protocol presents a novel approach to surgical education 
and performance assessment, utilizing advanced computer 
vision and ML technologies. By focusing on APMs derived 
from laparoscopic and robotic surgical videos, the study 
aims to improve surgical training for trainees and enhance 
performance for specialists.
This approach is particularly relevant in the context of modern 
healthcare’s evolving complexities, including the need for 
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efficient training programs within constrained working 
hours and heightened ethical considerations around patient 
safety. The training of surgeons in low- and middle-income 
countries (LMICs) will benefit from the results of this study. 
If improvements in APMs lead to improved performance, 
surgeons from LMICs can enhance their skills without the need 
to spend months or years training in developed countries.

Real-world data on surgeons’ performance can personalize 
training in precise and productive ways. Guided by surgical 
educators, ML models can identify performance qualities not 
necessarily evident to experienced trainers, potentially leading 
to more rapid skill acquisition. Automated surgical phase 
recognition is a foundational step for other applications that 
can create informative and focused educational material for 
students and residents.

Challenges such as non-static cameras resulting in abrupt 
viewpoint changes, inconsistent organs and instruments, 
variations in illumination, unfocused frames, and the presence 
of blood and smoke in the surgical field can be addressed 
through iterative refinement of the models to improve image 
analysis.

Perspectives
In the future, APMs might be correlated with different post-
operative outcomes (functional, oncological, patient-reported 
outcomes, etc.), opening a new era in surgical research as 
objective measures are integrated with clinical assessments and 
patient-reported outcome measures. An artificial intelligence 
system capable of recognizing surgical phases may be used 
for numerous tasks, including quality measurement, adverse 
event recording and analysis, education, statistics, and surgical 
performance evaluation.20

High-volume simulator training based on real procedures will 
be possible, as anonymized procedures can be transformed 
into surgical simulators for training and experimentation 
with innovative modifications to traditional techniques. The 
efficiency of producing surgical reports is an additional benefit.

For hospital administration, operating room scheduling is 
challenging because pre-operative estimates of procedure 
duration are often inaccurate. This inaccuracy stems from 
considerable variability in how procedures unfold. Real-time 
information about the progress of surgeries is crucial for 
effectively adjusting the daily operating room schedule. Ideally, 
this information should be objective, automatically accessible, 
and available in real time to predict the remaining duration 
of surgeries. Such data would enable optimal planning and 
utilization of operating theatre resources, ensuring they are 
used to their fullest capacity.20
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